Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Med Res ; 28(1): 81, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2253575

ABSTRACT

BACKGROUND: COVID-19 has a wide spectrum of clinical manifestations and given its impact on morbidity and mortality, there is an unmet medical need to discover endogenous cellular and molecular biomarkers that predict the expected clinical course of the disease. Recently, epigenetics and especially DNA methylation have been pointed out as a promising tool for outcome prediction in several diseases. METHODS AND RESULTS: Using the Illumina Infinium Methylation EPIC BeadChip850K, we investigated genome-wide differences in DNA methylation in an Italian Cohort of patients with comorbidities and compared severe (n = 64) and mild (123) prognosis. Results showed that the epigenetic signature, already present at the time of Hospital admission, can significantly predict risk of severe outcomes. Further analyses provided evidence of an association between age acceleration and a severe prognosis after COVID-19 infection. The burden of Stochastic Epigenetic Mutation (SEMs) has been significantly increased in patients with poor prognosis. Results have been replicated in silico considering COVID-19 negative subjects and available previously published datasets. CONCLUSIONS: Using original methylation data and taking advantage of already published datasets, we confirmed in the blood that epigenetics is actively involved in immune response after COVID-19 infection, allowing the identification of a specific signature able to discriminate the disease evolution. Furthermore, the study showed that epigenetic drift and age acceleration are associated with severe prognosis. All these findings prove that host epigenetics undergoes notable and specific rearrangements to respond to COVID-19 infection which can be used for a personalized, timely, and targeted management of COVID-19 patients during the first stages of hospitalization.


Subject(s)
COVID-19 , Epigenome , Humans , Genome-Wide Association Study/methods , COVID-19/genetics , Epigenesis, Genetic , DNA Methylation/genetics
2.
EClinicalMedicine ; 32: 100721, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1032448

ABSTRACT

BACKGROUND: Non-pharmacological interventions (NPI), including lockdowns, have been used to address the COVID-19 pandemic. We describe changes in the environment and lifestyle of school children in Cyprus before the lockdown and during school re-opening, and assess compliance to NPI, using the exposome concept. METHODS: During June 2020, parents completed an online questionnaire about their children's lifestyle/behaviours for two periods; school re-opening (May 21-June 26) following the population-wide lockdown, and the school period before lockdown (before March). FINDINGS: Responses were received for 1509 children from over 180 primary schools. More than 72% of children complied with most NPI measures; however, only 48% decreased the number of vulnerable contacts at home. Sugary food consumption was higher in the post-lockdown period with 37% and 26% of the children eating sugary items daily and 4-6 times/week, compared to 33% and 19%, respectively, for the pre-lockdown period (p<0.001). Children's physical activity decreased compared to pre-lockdown (p<0.001), while screen time increased in the post-lockdown period, with 25% of children spending 4-7 hours/day in front of screens vs. 10% in the pre-lockdown period (p<0.001). About half of the children washed their hands with soap 4-7 times/day post-lockdown vs. 30% in the pre-lockdown period (p<0.001). INTERPRETATION: This national survey showed a high degree of compliance to NPI measures among school children. Furthermore, the exposome profile of children may be affected in the months following NPI measures due to alterations in diet, physical activity, sedentary behaviour, and hand hygiene habits. FUNDING: Partial funding by the EXPOSOGAS project, H2020 Research and Innovation Programme (grant #810995).

SELECTION OF CITATIONS
SEARCH DETAIL